Relations

Mappings, Properties, Equivalence Classes & Modular Arithmetic

1. Functions vs. Relations

The Distinction

A function maps each input to exactly one output. A relation generalizes this: an input can map to multiple outputs, or none.

Not Functions (Relations):

  • $x < y$ (One number is less than infinitely many others)
  • $x$ is a parent of $y$ (A parent can have multiple children)
  • Matrix $A$ is orthogonal to Matrix $B$
  • Triangle $t_1$ congruent to $t_2$

Function ($y=x^2$)

Passes Vertical Line Test

Relation ($x=y^2$)

Fails Vertical Line Test

2. Binary Relations & Inverses

Definition

A binary relation $R$ from set $A$ to set $B$ is a subset of $A \times B$.
The inverse relation $R^{-1}$ flips the pairs: $R^{-1} = \{(y, x) \in B \times A \mid (x, y) \in R\}$.

Finite Example

Set A: {2, 3, 4} | Set B: {2, 6, 8}

Relation R: $a$ divides $b$ ($a|b$)

R

(2,2)

(2,6)

(2,8)

(3,6)

(4,8)

R⁻¹

(2,2)

(6,2)

(8,2)

(6,3)

(8,4)

Inverse Meaning: $b$ is a multiple of $a$.

Infinite Example

Relation: $v = 2|u|$ on $\mathbb{R} \times \mathbb{R}$.

Graph R ($v=2|u|$)

Graph R⁻¹ ($u=2|v|$)

R⁻¹ is not a function (fails vertical line test).

3. Properties of Relations

Reflexive

$(x,x) \in R$ for all $x$.

"Every element loops to itself."

Symmetric

If $(x,y) \in R$, then $(y,x) \in R$.

"Arrows go both ways."

Transitive

If $(x,y) \in R$ and $(y,z) \in R$, then $(x,z) \in R$.

"Direct paths exist for indirect routes."

Analyze R on set {0, 1, 2, 3}

R = {(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)}

Reflexive?
YES
(0,0)..(3,3) all present.
Symmetric?
YES
(0,1)↔(1,0), (0,3)↔(3,0).
Transitive?
NO
(1,0) & (0,3) exist, but (1,3) is missing.

4. Equivalence Relations

A relation is an Equivalence Relation if it is Reflexive, Symmetric, and Transitive. It partitions a set into disjoint Equivalence Classes.

Example: "Least Element" on Power Set

Let $X$ be the power set of $\{1, 2, 3\}$. Relation $R$: $A R B \iff \min(A) = \min(B)$.

Equivalence Classes:

  • [{1}] (Min is 1): $\{1\}, \{1,2\}, \{1,3\}, \{1,2,3\}$
  • [{2}] (Min is 2): $\{2\}, \{2,3\}$
  • [{3}] (Min is 3): $\{3\}$

Example: Congruence Modulo $n$

$a \equiv b \pmod n \iff n \mid (a-b)$. This partitions integers into $n$ classes.

[0]
{..., -3, 0, 3, 6...}
[1]
{..., -2, 1, 4, 7...}
[2]
{..., -1, 2, 5, 8...}

Example for Mod 3

5. Modular Arithmetic Applications

1. Finding the Last Digit

Find the units digit of $1483^{8650}$.

1. We need $3^{8650} \pmod{10}$.

2. Pattern of powers of 3:
$3^1=3, 3^2=9, 3^3=7, 3^4=1$. (Cycle of 4)

3. Exponent $8650 = 4(2162) + 2$. Remainder is 2.

4. $3^{8650} \equiv 3^2 \equiv \mathbf{9}$.

2. Inconsistent Systems

Solve $16x + 12y = 32$ and $40x - 9y = 7$.

Apply Mod 3:

Eq 1: $16 \equiv 1, 12 \equiv 0, 32 \equiv 2$.
$\implies 1x + 0y \equiv 2 \implies \mathbf{x \equiv 2}$.

Eq 2: $40 \equiv 1, -9 \equiv 0, 7 \equiv 1$.
$\implies 1x + 0y \equiv 1 \implies \mathbf{x \equiv 1}$.

Contradiction! $x$ cannot be 1 and 2. No integer solution.

3. Universal Product Code (UPC) Check Digit

Code: 88442334010. Find the 12th digit.

Formula:

$k = 3(\text{Sum Odd Pos}) + (\text{Sum Even Pos})$

$a_{12} = (210 - k) \pmod{10}$

Odd (1,3,5...): $8+4+2+3+0+0 = 17$

Even (2,4,6...): $8+4+3+4+1 = 20$

$k = 3(17) + 20 = 51 + 20 = 71$.

$a_{12} = (210 - 71) \pmod{10} = 139 \pmod{10} = \mathbf{9}$.

Review Quiz

1. Is the relation $R = \{(x,y) \in \mathbb{R}^2 \mid x < y\}$ reflexive?

2. If a relation is an Equivalence Relation, it partitions the set into:

3. What is the value of $3^{4k+3} \pmod{10}$?

Back to Course Home