Elementary Matrices

Chapter 2 • Section 2-5

"The building blocks of row reduction! 🧱"

🧱 What is an Elementary Matrix?

Definition

An elementary matrix is obtained by performing a single elementary row operation on the Identity Matrix ($I$).

Just one operation! No more, no less.

Type I: Swap

Interchange two rows.

$$ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} $$

Type II: Scale

Multiply a row by $k \neq 0$.

$$ \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} $$

Type III: Add

Add multiple of one row to another.

$$ \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} $$

🕵️‍♀️ Identity Check Win $10

Is $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ an elementary matrix?

Hint: Try to get it from $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ in one step.

The Magic Property

If $E$ is an elementary matrix, then multiplying $EA$ performs the same row operation on $A$.

Example:

Let $E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (Swap rows).

Then $EA$ will swap the rows of $A$!

Matrix Multiplication

E
×
A
=
A'

Left-multiplying acts on Rows.

(Right-multiplying acts on Columns!)

Invertibility

Every elementary row operation is reversible. Therefore:

Every Elementary Matrix is Invertible!

And its inverse is an elementary matrix of the same type.

Swap Inverse:

Swap back! ($E^{-1} = E$)

Scale Inverse:

Multiply by $1/k$.

Add Inverse:

Subtract the multiple.

The Fundamental Theorem

Theorem

An $n \times n$ matrix $A$ is invertible if and only if $A$ can be written as a product of elementary matrices.

Example: Writing A as Product of Elementary Matrices

Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix}$. Reduce to $I$:

  1. Swap $R_1, R_2$: $E_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \implies E_1 A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$.
  2. $R_1 \leftarrow R_1 - 3R_2$: $E_2 = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix} \implies E_2 (E_1 A) = I$.

So $E_2 E_1 A = I$. Thus $A = E_1^{-1} E_2^{-1}$.

$$ A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} $$

🧩 Puzzle Time Win $20

If $A$ is invertible, can we write $A$ as a product of elementary matrices?