Linear Recurrences
Chapter 3 • Section 3-4
"Predicting the future, one step at a time. 🔮"
🐇 The Fibonacci Sequence
0, 1, 1, 2, 3, 5, 8, 13, 21, ...
Each number is the sum of the previous two:
Generate Sequence
The Matrix Trick
Turning it into a System
We can write the recurrence as a matrix equation $\vec{v}_{k+1} = A \vec{v}_k$:
Now we can use powers of $A$ to find any term!
Binet's Formula
Using eigenvalues $\lambda = \frac{1 \pm \sqrt{5}}{2}$:
Derived from $A = PDP^{-1}$!
Example: Solving $x_{k+2} = 5x_{k+1} - 6x_k$
Initial values: $x_0=0, x_1=1$.
- Matrix: $A = \begin{bmatrix} 0 & 1 \\ -6 & 5 \end{bmatrix}$.
- Eigenvalues: $\lambda^2 - 5\lambda + 6 = 0 \implies (\lambda-2)(\lambda-3)=0$. So $\lambda_1=2, \lambda_2=3$.
- Eigenvectors: $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.
- General Solution: $\vec{v}_k = c_1 2^k \vec{v}_1 + c_2 3^k \vec{v}_2$.
- Solve for Constants: At $k=0$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Solution: $c_1=-1, c_2=1$.
- Final Formula: $x_k = 3^k - 2^k$.
🧠 Matrix Setup Win $10
For the recurrence $x_{k+1} = 3x_k - 2y_k$ and $y_{k+1} = x_k + y_k$, what is the matrix $A$?
Dynamical Systems
Attractors
If all $|\lambda| < 1$, the system goes to $\vec{0}$.
The origin is a "sink".
Repellers
If all $|\lambda| > 1$, the system explodes away.
The origin is a "source".
Saddle Points
If some $|\lambda| > 1$ and some $|\lambda| < 1$.
🤔 Long Term Behavior Win $20
If eigenvalues are $0.5$ and $0.8$, what happens to $\vec{v}_k$ as $k \to \infty$?