Moments and Moment Generating Functions

Advanced tools for characterizing and analyzing probability distributions.

Higher Order Moments

Moments describe different aspects of a distribution's shape. The \(n\)th central moment is: $$ \mu_n = E[(X - E[X])^n] $$

Central Moments

  • μ₀: Always 1
  • μ₁: Always 0
  • μ₂: Variance (spread)
  • μ₃: Skewness (asymmetry)
  • μ₄: Kurtosis (tailedness)

Raw Moments

About the origin:

$$ m_n = E[X^n] $$

  • m₁: Mean
  • m₂: E[X²]

How Moments Affect Shape

Interactive: Distribution Shape Explorer

Mean
5.0
Variance
2.5
Skewness
0.0

Moment Generating Function (MGF)

Definition

$$ M_X(t) = E[e^{tX}] = \sum_x e^{tx} p(x) $$

Key Property: The \(n\)th derivative of the MGF at \(t=0\) gives the \(n\)th raw moment: $$ E[X^n] = M_X^{(n)}(0) $$

Understanding MGF: Taylor Series

The MGF works because \(e^{tX}\) can be expanded as a Taylor series:

$$ e^{tX} = $$

$$ 1 $$
$$ + tX $$
$$ + \frac{(tX)^2}{2!} $$
$$ + \frac{(tX)^3}{3!} $$
$$ + \cdots $$

MGF Explorer

Select a Distribution

MGF:

$$ M_X(t) = (0.5e^t + 0.5)^{10} $$

E[X] = M'(0)
5.0
E[X²] = M''(0)
27.5
Var(X)
2.5