Statistical Inference

Drawing conclusions from data. Point Estimation, Maximum Likelihood, and Confidence Intervals.

1 Point Estimation

A point estimator \( \hat{\Theta} \) is a function of the sample data used to estimate an unknown parameter \( \theta \).

Bias

\( B(\hat{\Theta}) = E[\hat{\Theta}] - \theta \)
An estimator is unbiased if \( B(\hat{\Theta}) = 0 \).

Mean Squared Error (MSE)

\( \text{MSE}(\hat{\Theta}) = E[(\hat{\Theta} - \theta)^2] \)
\( \text{MSE} = \text{Var}(\hat{\Theta}) + [B(\hat{\Theta})]^2 \)

Consistency: An estimator is consistent if it converges in probability to the true parameter as \( n \to \infty \).

2 Maximum Likelihood Estimation (MLE)

The MLE method finds the parameter \( \theta \) that maximizes the Likelihood Function \( L(\theta) \), which is the probability of observing the given data.

$$ \hat{\theta}_{MLE} = \arg\max_{\theta} L(\theta; x_1, \dots, x_n) $$

MLE Explorer: Coin Toss

Suppose we flip a coin \( n \) times and get \( k \) heads. The likelihood function for the probability of heads \( p \) is \( L(p) \propto p^k (1-p)^{n-k} \).
Adjust \( n \) and \( k \) to see how the likelihood function changes and where the maximum lies.

MLE Estimate: \( \hat{p} = \) 0.50

3 Interval Estimation (Confidence Intervals)

A \( (1-\alpha)100\% \) Confidence Interval is a random interval \( [L, U] \) that contains the true parameter \( \theta \) with probability \( 1-\alpha \).

$$ P(L \leq \theta \leq U) = 1 - \alpha $$

Common CI for Mean (known \( \sigma \)): $$ \bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} $$

Confidence Interval Simulator

We generate 20 samples from a Normal distribution with \( \mu=0, \sigma=1 \). For each sample, we calculate the 95% CI.
Green intervals contain the true mean (0), Red ones do not. In the long run, ~95% should be green.

Check Your Understanding

1. Unbiased Estimator

If \( E[\hat{\Theta}] = \theta \), then the estimator is:

2. Confidence Interval Meaning

What does a 95% CI mean?