1 Point Estimation
A point estimator \( \hat{\Theta} \) is a function of the sample data used to estimate an unknown parameter \( \theta \).
Bias
\( B(\hat{\Theta}) = E[\hat{\Theta}] - \theta \)
An estimator is unbiased if \( B(\hat{\Theta}) = 0 \).
Mean Squared Error (MSE)
\( \text{MSE}(\hat{\Theta}) = E[(\hat{\Theta} - \theta)^2] \)
\( \text{MSE} = \text{Var}(\hat{\Theta}) + [B(\hat{\Theta})]^2 \)
Consistency: An estimator is consistent if it converges in probability to the true parameter as \( n \to \infty \).
2 Maximum Likelihood Estimation (MLE)
The MLE method finds the parameter \( \theta \) that maximizes the Likelihood Function \( L(\theta) \), which is the probability of observing the given data.
MLE Explorer: Coin Toss
Suppose we flip a coin \( n \) times and get \( k \) heads. The likelihood function for the
probability of heads \( p \) is \( L(p) \propto p^k (1-p)^{n-k} \).
Adjust \( n \) and \( k \) to see how the likelihood function changes and where the maximum
lies.
MLE Estimate: \( \hat{p} = \) 0.50
3 Interval Estimation (Confidence Intervals)
A \( (1-\alpha)100\% \) Confidence Interval is a random interval \( [L, U] \) that contains the true parameter \( \theta \) with probability \( 1-\alpha \).
Common CI for Mean (known \( \sigma \)): $$ \bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} $$
Confidence Interval Simulator
We generate 20 samples from a Normal distribution with \( \mu=0, \sigma=1 \). For each sample, we
calculate the 95% CI.
Green intervals contain the true mean (0), Red ones do not. In the long run, ~95% should be
green.
Check Your Understanding
1. Unbiased Estimator
If \( E[\hat{\Theta}] = \theta \), then the estimator is:
2. Confidence Interval Meaning
What does a 95% CI mean?